55. Jump Game
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Determine if you are able to reach the last index.
Example 1:
Input: [2,3,1,1,4]
Output: true
Explanation: Jump 1 step from index 0 to 1, then 3 steps to the last index.
Example 2:
Input: [3,2,1,0,4]
Output: false
Explanation: You will always arrive at index 3 no matter what. Its maximum
jump length is 0, which makes it impossible to reach the last index.
题目大意:给一个数组,数组中的每一个元素表示从当前可以向后跳的步数,要求求出可否从第一步跳到最后一步。
解题思路:定义一个转移方程,因为要到当前位置,跳跃要不就从前一步发生,要不就从更前的某位发生,完成跳跃需要花费1。用dp记录跳到某步时,依然拥有往后再跳几步的能力。
class Solution {
public:
bool canJump(vector<int>& nums) {
if(nums.size() == 0)
return true;
vector<int> dp(nums.size(), 0);
dp[0] = max(0, nums[0]); //steps we still have after the step 0
for(int i = 1; i < nums.size(); i++){
if(dp[i-1] < 0)
return false;
//steps we have after step i, we can either jump from prev-prev step
// or prev step
dp[i] = max(dp[i-1], nums[i-1]) - 1;
}
return dp.back() >= 0; //need to have step available
}
};
测试一下,
Success
Details
Runtime: 8 ms, faster than 98.62% of C++ online submissions for Jump Game.
Memory Usage: 10 MB, less than 51.25% of C++ online submissions for Jump Game.
45. Jump Game II
Hard
Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
Example:
Input: [2,3,1,1,4]
Output: 2
Explanation: The minimum number of jumps to reach the last index is 2.
Jump 1 step from index 0 to 1, then 3 steps to the last index.
Note: You can assume that you can always reach the last index.
题目大意:接上题,假设一定能跳到终点,要求求出跳到终点需要的最少步数。
解题思路:同样用动态规划,dp数组用来存跳到当前节点需要的最少步数。
class Solution {
public:
int jump(vector<int>& nums) {
if(nums.size() == 0)
return 0;
// dp contains the jump needed to reache current step
vector<int> dp(nums.size(), INT_MAX);
dp[0] = 0; //need 0 jump to reach step 1
for(int i = 0; i < nums.size(); i++){
//from step i, one is able to jump to step i + nums[i]
int j = min(i + nums[i], (int)nums.size()-1);
//update jump num in [i:j]
for(; j >= i; j--){
//if step j is already reachable in previous jump,
// the current jump cannot have less jump num, therefore break out
if(dp[j] < INT_MAX){
break;
}
dp[j] = dp[i] + 1; //update jump num
}
}
return dp.back();
}
};
测试一下,
Success
Details
Runtime: 12 ms, faster than 88.80% of C++ online submissions for Jump Game II.
Memory Usage: 10.4 MB, less than 47.05% of C++ online submissions for Jump Game II.
62. Unique Paths
Medium
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3
Output: 28
题目大意:一个机器人在mxn的棋盘中的左上角出发,前往右下角,要求求出有多少条不同的路可以走。
解题思路:利用动态规划,将到达每一个格子可以走的路记录。
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> dp(m, vector<int>(n, 0));
//only one path to reach the first col
for(int i = 0; i < m; i++){
dp[i][0] = 1;
}
//only one path to reach the first row
for(int j = 0; j < n; j++){
dp[0][j] = 1;
}
//two path to reach the rest cell, from up and from left
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
};
测试一下,
Success
Details
Runtime: 4 ms, faster than 85.41% of C++ online submissions for Unique Paths.
Memory Usage: 8.8 MB, less than 19.03% of C++ online submissions for Unique Paths.
63. Unique Paths II
Medium
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
Note: m and n will be at most 100.
Example 1:
Input:
[
[0,0,0],
[0,1,0],
[0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right
题目大意:在上题的基础上,棋盘中的一些格子有障碍物不能到达。
解题思路:在上题的解法上,遍历时对有障碍物的格子进行特殊处理。
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>> &obstacleGrid){
int m = obstacleGrid.size();
if (m == 0)
return 0;
int n = obstacleGrid[0].size();
vector<vector<int>> dp(m, vector<int>(n, 0));
for (int i = 0; i < m; i++){
if(obstacleGrid[i][0] == 1){
break;
}else{
dp[i][0] = 1;
}
}
for (int j = 0; j < n; j++){
if(obstacleGrid[0][j] == 1){
break;
}else{
dp[0][j] = 1;
}
}
for (int i = 1; i < m; i++){
for (int j = 1; j < n; j++){
if(obstacleGrid[i][j] == 1){
dp[i][j] = 0;
}else{
//cout << dp[i - 1][j] << " "<< dp[i][j - 1] << endl;
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
//dp.at(i).at(j) = dp.at(i-1).at(j) + dp.at(i).at(j-1);
}
}
}
return dp[m - 1][n - 1];
}
};
64. Minimum Path Sum
Medium
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
Example:
Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.
题目大意:在一个棋盘中,从左上角出发到右下角,路过每一个棋盘格子都有一定的开销,要求找到一条路,使得到达终点的开销最小。
解题思路:这一题和62题的思路非常相似,只是动态规划的目标变成了路径和。
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size();
if(row <= 0)
return 0;
int col = grid[0].size();
vector<vector<int>> costs(row, vector<int>(col, 0));
costs[0][0] = grid[0][0];
//first column
for(int i = 1; i < row; i++){
costs[i][0] = grid[i][0] + costs[i-1][0];
}
//first row
for(int j = 1; j < col; j++){
costs[0][j] = grid[0][j] + costs[0][j-1];
}
//traversal the rest cells
for(int i = 1; i < row; i++){
for(int j = 1; j < col; j++){
costs[i][j] = grid[i][j] + min(costs[i-1][j], costs[i][j-1]);
}
}
return costs[row-1][col-1];
}
};
测试一下,
Success
Details
Runtime: 12 ms, faster than 81.56% of C++ online submissions for Minimum Path Sum.
Memory Usage: 11 MB, less than 31.72% of C++ online submissions for Minimum Path Sum.